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Kikuchi's cluster variation method (CVM) is reformulated as the truncation of 
a M6bius inversion. An attempt is made to explicate and simplify the various 
approaches to the CVM. This formulation makes apparent the connection of 
the method with other types of cluster approximation. An illustration of the 
procedure is provided. 
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1. I N T R O D U C T I O N  

The cluster variation method (CVM), (1) a closed-form approximation 
scheme often used in statistical physics, is powerful and accurate in deter- 
mining phase diagrams (for reviews on applications of the CVM, see ref. 2 
and 3). The method has been used successfully in computing phase 
diagrams involving both first-order and continuous transitions. (1 3) In 
addition, exact series expansion coefficients up to seventh order have been 
extracted using the CVM with moderate computation efforts. (4,5) Results 
obtained from the CVM compare favorably with those of Monte Carlo 
simulations. (6, 7) 

In Kikuchi's formulation of the CVM, one generates an approximate 
expression for the entropy through Boltzmann's relation S=kB In G by 
counting the thermodynamic weight G approximately (1) (kB is the 
Boltzmann constant). For example, to derive an approximation for the 
entropy of a spin-l/2 system in the pair approximation, one introduces an 
ensemble of systems and counts the number of ways that new sites can be 
introduced into the ensemble without changing the equilibrium fraction of 
up and down spins and the fraction of pairs of all configurations. (t) This 
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ensemble method becomes difficult to follow for large clusters because of 
the complexity of the counting involved. To overcome this difficulty, the 
CVM has been reformulated several times. (8 1ol Barker(S) reformulated the 
CVM employing a generalized quasichemical argument and obtained a 
generally applicable approximation for the entropy. Barker's formulation 
has the virtue of relative computational simplicity, but its mathematical 
basis is not well founded. Morita reformulated (9) the CVM, using a 
generalized cumulant expansion for the entropy, which is conceptually 
more favorable than the ensemble or generalized quasichemical method. 
However, his method is rarely employed due to its mathematical com- 
plexity. Very recently, Schlijper, in his investigation of the mathematical 
aspects of the convergence (11) of CVM, noted without further elaboration 
that Morita's cumulant expansion is a M6bius inversion. As we shall see, 
the use of the M6bius inversion (12) enables a conceptually clear and 
mathematically simple formulation of the CVM. Though this paper reaches 
essentially the same results as previous works, I believe the present 
exposition to be clearer and therefore of more use. Definitions and 
notations are introduced in Section 2. I then proceed in Section 3 to 
the general formulation of the CVM. A specific application is given in 
Section 4. 

2. DEF IN IT IONS 

Consider a set P consisting of elements {7, fl, 7,...}- There exists a 
binary relation R between certain pairs of elements, satisfying (1) reflexivity 
(7R7 for every 7 ~ P), (2) transitivity (7Rfl and /?R7 together imply 7R7), 
and (3) antisymmetry (7Rfl and fiR7 together imply 7=f l ) .  A pair of 
elements is said to be comparable (noncomparable) if a relation R exists 
(does not exist) between them. The relation R is said to define a partial 
ordering on P, and is written as ~<. Furthermore, the set P itself is called a 
partially ordered set. 

Define (12) a function ( on P x P by 

~(fl, 7 ) =  {10: fl--.< 7 
otherwise (1) 

The M6bius function # of a partially ordered set P is defined through the 
following relation: 

Z ((7, fl) #(fl, 7) = 6(7, 7) (2) 

where 6(7, 7) is the Kronecker delta. The M6bius function of a partially 
ordered set P is uniquely determined by its constituting elements and the 
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binary relation R among them. For  any pair of real-valued functions f ,  g 
defined on a partially ordered set P related by 

we have (12) 

f ( ~ ) =  Z g(fl) (3) 

g(c~) = Z f(fl) #(fl, ~) (3') 

where (~, fl) t P. 
Now we specialize the consideration to a lattice with N sites. A cluster 

is a subset of n~ lattice sites. There exists a natural ordering of all clusters, 
namely e ~< fl if ~ is contained in ft. This partial ordering defines a partially 
ordered set P with the largest cluster L containing all N lattice sites with its 
subclusters (subsets) as its elements. The M6bius function for this partially 
ordered set is (12) 

#(~, fl) = ( -  1)~ n~ (4) 

We refer to site variables si as spins regardless of their nature as being 
discrete or continuous. The interaction among the spins in cluster ~ is writ- 
ten as h~(si, i t  c~). It is understood that h~(si, i t  ~) cannot be decomposed 
into interactions involving only subclusters of spins. 

The Hamiltonian can be written as 

~ =  Y~ h~(s~, ie~)  (5) 
~ E F  

where F is a collection of large clusters and their subclusters such that 
ha = 0 if ~ q~ F. The free energy of the system can be obtained by minimizing 
the functional 

F[p] = T r  p ~ + k B T T r  p In p (6) 

with respect to p, subject to the constraint Tr p = 1. The minimization is 
achieved at 

p = e-S~/kBr/Tr e ~/k . r  (7) 

which gives the density matrix of the system. If the minimization is carried 
out on a restricted class of functions, one is led to a particular closed-form 
approximation. 

The reduced density matrix for a cluster c~ is defined in the usual manner, 

p~ = Tr p (8) 
L c~ 
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where the partial trace is taken over all variables in L, except those in ~. It 
follows from the definition that 

p,  = Tr p~, /~>c~ 
~ (9) 

Trp~ = 1 

The cluster entropy associated with p~ is defined via 

S~ = - k B T r  p~lnp~ (10) 

The entropy of the entire lattice S is then the cluster entropy SL. A new set 
of functions is defined from the S~ using 

~ =  ~ (-1)"~-~eSr (11) 

The advantage of the S~ is that they are expected to die off quickly for 
clusters with linear size larger than the correlation length of the system ~5), 
while the S~ obviously do not. 

Since Eq. (11 ) is a summation over an interval in the partially ordered 
set P, we can invert it using M6bius inversion. Identifying ( - 1 )  "~ S~ and 
( - 1 )  "~S~ with f ( e )  and g(/?) of Eq. (3), respectively, it follows from 
Eqs. (3') and (4) that 

/~<~ 

The S~ are simply the familar cumulants. (9'13) 

(12) 

3. CLUSTER A P P R O X I M A T I O N  

From Eq. (12) we can write the entropy of the entire system as 

s= 2 2 (13) 
~ L  ~ P  

This is an exact expression. We now introduce the approximation by trun- 
cating (13) and keeping only terms associated with the subclusters of a 
chosen set of clusters 71, ~2,---, 7k. The 7's are pairwise noncomparable, i.e., 
no cluster 7i is a subcluster of another 7j for all i and j. We denote the set 
consisting of Y l, ~'z ..... y~ and all of their subclusters by P'. The truncation is 
motivated by the expected rapid convergence of ~ with increasing ~, 
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except when the system is near criticality, where there are very long-ranged 
correlations. After the truncation, we have 

s ~  Z & (14) 
~ E P '  

where P ' =  {~---<7~; i =  1, or 2 ..... or k}. This relation can be rewritten in 
terms of the S~, hence the p~, which will be our variational parameters. 
Substituting Eq. (11) in Eq. (14), we have 

S~ E S== E E ( -1 )  . . . .  l~Sfl 

= y, ~ ( - 1 )  "~ "t~((fl,~)S~ (14') 
~ r  fl 

Interchanging the order of summation of a and fl in Eq. (14'), we have 

S~ Z ~ (-1)~:-'~(fl,~)Sfl = ~ afS~ 
f l E P ' ~ P '  f l ~ P '  

(15) 

This relation was first obtained by Barker (8) (see also ref. 10) by a heuristic 
argument without obtaining an explicit expression for aft. We now have 

~ Ne(fl)- No(fl), 
a s =  ~ (_1)-~ -8((fl, a ) =  (No(fl)-Ne(fl), 

o~ ~ P'  

nf = even (16) 
nt~ = odd 

where N~(a) is the number of clusters in P' larger than or equal to a with 
even numbers of sites, and No(a) is similarly defined for the odd clusters. It 
is clear that af vanishes for those clusters having only one cluster larger 
than itself (1 - 1 =0).  It follows from Eqs. (2) and (16) that 

af t= ~ ~ ((~,f l)#(f l ,?)  

(~, f l )~ P'  

= ~ 5(~, 7)=  1 (16') 
7 r  

In practice, it is often easier to obtain the a s from Eq. (16') than from 
Eq. (16), since Eq. (16') avoids the inclusion of the clusters that have 
vanishing a~. 

For the energy part of the free energy (6), we have 

Tr p ~ =  ~ Tr ph~ = ~ Tr p,h, (17) 
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without approximation. Thus, a restricted functional is derived for the free 
energy, 

F[p~,~eP']= ~ Trp~h~+kBT ~ a~Trp~lnp~ 
~eF ~eP' 

(18) 

It is usual to choose P' such that all clusters of F, which define the range of 
interactions, are contained in P'. However, in the usual mean field 
approximation one takes P' as the collection of all single sites regardless of 
F, and F 4: P'. Another exception is found in ref. 16. Minimizing F subject 
to the constrains 

Tr p~ = 1 c~ e {maximum clusters in P' } 
(19) 

p~ = Tr p~ /~>~ 

we obtain a system of nonlinear algebraic equations which can be solved 
numerically by Kikuchi's natural iteration algorithm (12) or by other 
numerical methods. 

Note that in the above discussion no specific information about the 
function to be approximated has been used except the requirement that the 
cumulants approach zero for large clusters. Thus, in place of the cluster 
entropies S~, one can consider H~ or F~ defined by 

p~ = e /~/~"r/Yr e m/k.r, F~ = --kB T in  Tr e -H~/k"r (20) 

Up to this point, the p~ have been considered as functions which are 
varied to minimize the approximate free energy. Alternatively, one can 
treat them as the true reduced density matrices of the system, which 
therefore satisfy Eq. (9). Then the Hamiltonian and the free energy can be 
approximated in a manner analogous to that in which entropy was in 
Eq. (15), 

~ ~ a~H~, F,~ ~ a~F~ (20a) 
o~ E P '  c ~  P '  

Equations (19), (20), and (20a) together form a set of self-consistent 
equations for the H~. ~'~ It has been shown that these procedures are, in 
fact, equivalent. ~1~ Note that H~ is in general quite different from the sum 
of bare interaction within the cluster ct, namely, 

- ~ h~(s,, i~fl) (20b) 
B~<~ 

In some cases it may be profitable to define the cluster Hamiltonian in a 
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mixed way(5); namely, if c~ ~ P , H~ is given by Eq. (20), otherwise, by 
of Eq. (20b), where P c P'. We then again have a set of self-consistent 
equations for {H=, c~eP-}  given by Eqs. (19), (20, (20a), and (20b). 

4. P A R T I C U L A R  A P P R O X I M A T I O N S  

In actual application, simple symmetry considerations often reduce the 
sums in Eq. (18) to a very small number of terms, 

F / N =  ~, T r h ~ p ~ / N - r  ~ a~S~/N 
~E1 ~ :tEP' 

= ~ [(N~o/N ) Tr h~oP~ o - Ta~o(N~o/N ) S~0 ] (21) 
~0 

where N ~  oc is the total number of sites of the lattice, and N~o the total 
number of clusters of the ao kind. As an example, consider a lattice gas 
model on an fcc lattice with first-neighbor exclusion and second- and third- 
neighbor interaction. The Hamiltonian is 

~ZtaHC= ~ "inj g2-}" 2 ninjg3--#2ni (22) 
(2nd)  ( 3rd ) i 

where the first sum is over all second-neighbor pairs, the second term is 
over all third-neighbor pairs, # is the chemical potential, and ni = 0, 1 for 
empty or occupied sites, respectively. 

The clusters P'  are taken to be all tetrahedrons consisting of four 
nearest neighbor sites, all second-neighbor pairs, all third-neighbor pairs, 
and all their subclusters, (first neighbor pairs and points). An fcc lattice can 
be divided into four interpenetrating simple cubic lattices. They are labeled 
as sublattices 1-4 respectively. The first and third neighbors of a site are 
located on a different sublattice than that of the site itself, and are labeled 
as (AB), where A stands for the sublattice of one site and B for the other. 
Second neighbors are located on the same sublattice. 

Tetrahedrons belong to the largest clusters of P'; it follows from 
Eq. (16) that a r = 1. All tetrahedrons are equivalent, and their number per 
site is 2. A first-neighbor pair is contained in two tetrahedrons and four 
triangles. Thus we have a l s t ( a B ) = l + 2 - 4 = - I  from Eq.(16), or 
alst(AB ) = 1 --2a r = - 1 ,  from Eq. (16') (note that atriangle = 1 - 1 = 0). The 
number of first-neighbor pairs of (AB) kind per site is 1. Similarly, we have 
the results listed in Table I. Where S ~~ is a simple sum, e.g., 

s3rd(AB) = - - k B  2 L(p3rd(AB)) ( 2 3 )  

i 

with L(x )=-x  In x, and i labels the configurations of the third-neighbor 
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Tab le  I 

C~o N~o/N a~ o S ~~ ( ==- S~o ) 

Third-neighbor pairs (AB) 2 1 S 3rd(AB) 

Second-neighbor pairs (AA) 3/4 1 S 2na~AAI 
Tetrahedron 2 1 S r 
First-neighbor pairs (AB) 1 - -  1 S lst(AB) 

Point (A) 1/4 - 2 5  S plA) 

pairs. The triangle cluster does not enter at all in the above, for it has no 
contributions either to the entropy or to the energy in the above 
approximation. One can now minimize the free energy (21) with the 
constraints expressed by (19). For details of the minimization, see ref, 14 
and 15. 
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